
STABILITY OF FLUID FLOW IN A PLANE CHANNEL WITH UNIFORM INJECTION 

OR SUCTION THROUGH POROUS WALLS 

V. M. Eroshenko, L. I. Zaichik, 
and V. B. Rabovskii 

UDC 532.526 

The stability of laminar flow in a channel with porous walls is analyzed within 
the scope of the linear theory. 

The stability of flow in the entrance section of a plane channel with one-sided injec- 
tion through the lower wall has been studied experimentally in several papers [1-3]. The 
studies show that weak injection lowers the flow stability, while the mechanism of evolution 
of the disturbances is largely similar to the case of flow on impermeable surfaces and is 
related to the evolution of Tollmien--Schlichtlng waves. Under large-injection conditions a 
flow-stabilizing effect is observed as the injection rate is increased either in the case of 
accelerated motion in a channel of constant cross section or in nongradlent flow realized by 
regulation of a flexible upper wall. The inception of instability in large injection can be 
described within the scope of the linear theory of stability of an ideal fluid, and the in- 
fluence of viscosity is found to be insignificant. 

It has been confirmed experimentally [4] that injection in a circular pipe, in contrast 
with Poiseuille flow, is accompanied by growth of the critical Reynolds number. The transi- 
tion to turbulent flow is delayed by the stabilizing action of the injection-induced axial 
pressure gradient (flow acceleration) [4, 5]. 

The flow stability problem has been analyzed theoretically [6, 7] on the basis of the 
solution of the modified Orr-Sommerfeld equation for uniform symmetrical injection through 
the walls in the case of fully developed flow and in the entrance section of a plane channel. 
The attendant calculations also exhibit the flow stabilization effect and growth of the 
critical Reynolds number in large injection. 

In this work we investigate the influence of flow acceleration on the stability under 
small disturbances of hydrodynamically fully developed flow in a plane channel with uniform 
symmetrical injection through the walls, and we demonstrate the feasibility of calculating 
the neutral curve for large injection in the inviscid approximation. We also discuss the 
stability of flow in a plane channel with symmetrical suction through the walls. 

I. The differential equation for the amplitude of two-dimensional disturbances has the 
following form on the assumption =hat the inception of instability is of a local nature [6]: 

The velocity distribution in the hydrodynamically developed flow far from the entrance 
to the channel is described by the function F(n) [8, 9]: 

u~ = (Uo - -  V x ~ )  F '  (~),  u v = V F  (~). 

The differential equation for F(n) has the form 

F TM ~ R ( F U "  - -  F ' F " )  (2) 
with the boundary conditions 

F (O) = F" (O) = O, F'(1)=0, F(1)=I. (3) 
The effect of injection or suction on the flow stability is included in Eq. (I) either 

indirectly [through the dependence of F(n) on the parameter R] or directly in the last two 
terms. The first of these terms is associated with the presence of a transverse component 
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of the flow velocity, and the second with flow acceleration (deceleration) induced by injec- 
tion (suction). For boundary-layer flow, where the second effect is small, or in the case of 
flow in a plane channel with injection through one wall and suction at the same rate through 
the other wall, where the investigated effect is absent altogether, the last term in Eq. (i) 
is also absent [i0, ii]. 

We confine the discussion to symmetrical disturbances, so that the boundary conditions 
have the form 

~' (0) = ~ '"  (0) ~ ~ (I) = 9' (I) ~ 0 (4) 

The solutions of the corresponding eigenvalue problems are determined by the method 
proposed in [12]. 

2. To determine the role of flow acceleration in the case of injection we calculate the 
neutral curves (Fig. i) both from the solution of the complete equation (I) (solid curves) 
and without the last term in this equation (dashed curves). The variations, corresponding 
to these neutral curves, of the critical values of the Reynolds numbers Re,, the wave number 
~,, and the phase velocities Cr, as a function of the injection parameter IR[ are shown in 
Fig. 2. The results of solving Eq. (i) (solid curves) are in good agreement with the data 
obtained in [6]. It is evident from the figure that the inclusion of the last term in Eq. 
(i) does not significantly affect either the shape of the neutral curves or the values of 
the critical parameters. Contrary to the prevalent notion of the decisive role of flow 
acceleration in enhancing the flow stability in injection [4, 5], therefore, it is reasonable 
to infer that the principal factor promoting stabilization of the investigated flow is the 
presence of a transverse velocity component. 

It is also important to note that the failure of Squire's theorem in the given situation 
is specifically attributable to the presence of an axial velocity gradient. Consequently, the 
inconsequential effect of flow acceleration on the stability characteristics has the obvious 
implication that the analysis of flow in a plane channel with injection can be confined to 
two-dlmensional disturbances only, as in the case of constant mass flow rates. 

3. In the limit of infinite injection rate R § the neutral curves and critical param- 
eters can be calculated without the viscous terms in Eq. (1), i.e., from the solution of the 
problem 

i~m [ (F ' - -  0 ( ~ " - - ~ )  F"'~] -5 F ( ~ ' " - - ~ 2 ~  ') + F"~' = O. (5) 

Here the function F(q) is specified from the inviscid limit of Eq. (2): 

FF'"  - -  F'F" = 0 (6) 

and it has the form [9] 
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The inviscid neutral curve determined from (5) is the limiting solution of the complete 
equation (i) as R § It is interesting to note that here, unlike the usual situation in 
the theory of differential equations with a small parameter preceding the leading derivative, 
the solution (5) is the limit, uniform over the channel cross section, of the solutions of 
Eq. (i) as IRI + ~. This result is attributable to the fact that, even though Eq. (5) is an 
order lower than Eq. (I), its solution still satisfies all the boundary conditions (4), i.e., 
the condition~ "' = 0 holds, as is readily verified by differentiating (5) with regard for 
(7). This result is analogous to one in the theory of large-injection asymptotic solutions 
of the Navier--Stokes equations, where the inviscid solution is the uniform limit for the 
complete system of equations as IRI § ~ [13]. Thus, expression (7), representing the solu- 
tion of the inviscid third-order equation (6), satisfies all four boundary conditions (3). 

Consequently, as in the case of flow in the entrance section of a plane channel [I], the 
mechanism of the inception of instability in large injection in the fully developed flow zone 
also has an inviscid behavior. The values of the critical parameters determined from (5) 
with and without the last term (flow acceleration) are close to one another and equal, 
respectively: m, = 4.46, a, = 3.25, Cr, = 1.17 and m, = 4.62, u, = 3.31, Cr, = 1.17. 

4. Figure 3 shows the values of the critical parameters as a function of R, calculated 
for the suction case on the basis of the solution of Eq. (I) (solid curves) and the conven- 
tional Orr--Sommerfeld equation (dashed curves). It is evident from the figure that suction 
produces considerable flow stabilization, as in the outer flow problem [14]. Moreover, the 
direct inclusion of the suction effect in (i) causes the calculated critical values to grow 
more rapidly with the suction rate than when the analysis is based on the conventional Orr-- 
Sommerfeld equation. 

NOTATION 

x, distance from entrance cross section; y, transverse coordinate measured from axis; 
Ux, ~y, longitudinal and transverse velocity componenZs of main flow; h, half-width of chan- 
nel; v, kinematic viscosity coefficient; Uo, average velocity in entrance cross section; V, 
suction or injection rate (positive for suction); U = Uo -- Vx/h, local average velocity; ~, 
amplitude of flow disturbances; u, wave number; c, complex phase velocity of disturbances; 
cr, real propagation velocity of disturbances; n = y/h; Re = Uh/~, Reynolds number of main 
flow; R = Vh/v, injection or suction Reynolds number; m = U/IVI, injection rate parameter. 

LITERATURE CITED 

!. A. L. Ermakov, V. M. Eroshenko, A. A. Klimov, V. P. Motulevich, and Yu. N. Terent'ev, 
"Experimental study of flow stability for large injection," Izv. Akad. Nauk SSSR, Mekh. 
Zhidk. Gaza, No. 6, 114-123 (1972). 

2. V. M. Eroshenko, A. L. Ermakov, A. A. Klimov, V. P. Motulevich, and Yu. N. Terent'ev, 
"Influence of large injection on flow stability and the transition to turbulent flow," 
in: Thermophysical Properties and Gas Dynamics of High-Temperature Media [in Russian], 
Nauka, Moscow (1972), pp. 56-64. 

3. A. L. Ermakov, A. A. Klimov, and Yu. N. Terent'ev, "Evolution of disturbances on a porous 
surface," in: Heat and Mass Transfer under Conditions of Injection of Various Media 
through Porous Surfaces [in Russian], Izd. ENIN, Moscow (1973), pp. 24-28. 

959 



4. .K. Huesman and E. R. G. Eckert, "Untersuchungen Uber die lamlnare Str~mung und den 
UmschlagzurTurbulenz in por~sen Rohren mit gleichmassiger Einblasung durch die 
Rohrwand," Wgrme- Stoff6bertragung,~, 1-2 (1968). 

5. E. R. G. Eckert and W. Rodi, "Reverse transition turbulent-laminar for flow through a 
tube with fluid injection," Trans. ASME, Ser. E: J. Appl. Mech., 90, No. 4, 817-819 
(1968). 

6. V. N. Varapaev and V. I. Yagodkin, "Flow stability in a channel with porous walls," Izv. 
Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 91-95 (1969). 

7. V. N. Varapaev, N. A. Kuril'skaya, A. A. Sviridenkov, and Yu. I. Yagodkin, "Stability of 
non-self-similar flows in channels with porous walls," Tr. Mosk. Inzh.-Stroit. Inst., No. 
102, 5-26 (1973). 
A. S. Berman, "Laminar flow in channels with porous walls," J. Appl. Phys., 24, No. 9, 
1232-1236 (1953). 
R. M. Terrill, "Laminar flow in a uniformly porous channel," Aeronaut. Q., 15, No. 3, 
299-310 (1964). 
Yu. I. Alekseev and A. I. Korotkin, "Influence of transverse flow velocity in an incom- 
pressible boundary layer on the stability of laminar flow," Izv. Akad. Nauk SSSR, Mekh. 
Zhidk. Gaze, No. i, 32-36 (1966). 
V. N. Varapaev and V. I. Yagodkin, "Stability of certain nonparallel flows of a viscous 
incompressible fluid in a channel," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaze, No. 4, 125- 
129 (1970). 
V. A. Sapozhnikov, "Solution of the eigenvalue problem for ordinary differential equa- 
tions by the 'double-sweep' modified Gaussian elimination method," in: Proc. Second All- 
Union Sem. Numerical Methods of Viscous Fluid Mechanics [in Russian], Nauka, Novosibirsk 
(1969), pp. 212-219. 
G. F. Telenin and L. P. Shchitova, "Hydrodynamics of channels with porous walls: vanish- 
ing-viscosity theory," Nauchn. Tr. Nauchno-lssled. Inst. Mekh. Mosk. Gos. Univ., No. 30, 
4-90 (1973). 
H. Schlichting, Boundary Layer Theory (6th ed.), McGraw-Hill, New York (1968). 

. 

9. 

i0. 

Ii. 

12. 

13. 

14. 

MOLAR MOMENTUM AND HEAT TRANSFER 

V. F. Potemkin UDC 532.526 

Universal relations governing the molar transfer of momentum and heat are derived 
on the basis of a hypothesis about the dependence of the boundaries of the molar 
transfer region on the flow structure and with the use of a special mathematical 
transformation. 

Molar transfer, i.e., the transfer of momentum, heat, mass, and other entities by finite 
masses of a continuum, is commonplace in nature and technology. The well-known molar trans- 
fer relations contain empirical constants and are not universal [i]. 

We now attempt to establish universal relations for steady axisymmetrical and plane molar 
momentum- and heat-transfer processes in the turbulent core of a turbulent boundary layer. 

It has been shown [2] that the following generalized relation holds for molar momentum 
transfer in a turbulent boundary layer with zero pressure gradient: 

dO 
--= 1, (1) 

where U = (u +- l)/(u~-- I), R = in y+/in ~+. 
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